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Today’s Lecture

 Ordered Doubly-linked lists
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Singly-Linked List

 A singly-linked list has links going in only 
one direction. 

 For example…
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Singly-linked List

 Pointers only go forward.
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Doubly-Linked List

 A doubly-linked list has links going in 
BOTH directions. 

 For example…
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Doubly-linked List

 Pointers go in BOTH directions.
 Each node has a next and previous pointer.
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List Interface

 Here is the List Interface we will be using (same 
as for the singly-linked list):

public interface List {
public void insertItem(int item);
public void deleteItem(int item);
public boolean hasItem(int target);
public int retrieveItem(int target) throws Exception;
public void makeEmpty();
public boolean isFull();
public int getLength();

}

Note: Java has it own predefined List interface but it is more 
complicated, so we are using our own version.
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OrderedList Class (doubly linked)

 We will write an OrderedList class that 
implements our List interface.

 This implementation will have both next and 
previous links in each node.

public class OrderedList implements List 
{

// Implementation code goes here
}
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Node (doubly linked)

 The doubly-linked-list data structure requires that we keep TWO 
links at each node.

 Each item in the list will be a "Node" (not just the data).
 A node stores data references to both the next node and the 

previous node. 
 Defined Node as an inner class within the ordered list class.

class Node {
Declare int data // Data item
Declare Node next // Points to NEXT node
Declare Node prev // Points to PREVIOUS node

}
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List (doubly linked) Class Member 
Variables

 Doubly-linked-based private members 
(same as for singly-linked):

class  OrderedList {
Declare Node head
Declare int length

// Public members go here…
}
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List (doubly linked) - Constructor

 What should the OrderedList
constructor do?
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List (doubly linked) - Constructor

 What should the OrderedList
constructor do?

OrderedList Constructor
Set length to 0  // Sets the # of elements to 0
Set head to null
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List (doubly linked) - Constructor

 Ordered list AFTER default constructor 
runs.
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List (doubly linked) - isFull

isFull() returns boolean
Declare Node location
try 

Set location to new Node instance
Set location to null
return false

catch OutOfMemoryError exception
return true
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Check to see if 
you can allocate 

memory.

If you CAN, then 
the list is NOT full 

so return false.

If you CANNOT 
allocate memory, 

then the list is full.



List (doubly linked) - insertItem

How do you insert an item?

Where does it go in the list?
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List (doubly linked) - insertItem

 Where would a new item go? How is it inserted?
ol.insertItem(10)
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List (doubly linked) - insertItem

Since the list is ordered (and there are no other constraints) 
we can put it anywhere in the list. 

The easiest place to insert is at the beginning (same as for 
singly linked).

insertItem Pseudocode
1. Create a new Node instance (dynamically allocate).
2. Set the fields on the new Node. 

A. Set the data.
B. Set the next pointer to the current head.
C. Set the prev pointer to null.

3. Set the original head's previous to the new Node.
4. Set the head pointer to the new Node.
5. Increment the length of the list.
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List (doubly linked) - insertItem

ol.insertItem(10)

1. Create a new Node instance (dynamically allocate).
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List (doubly linked) - insertItem

ol.insertItem(10)

2. Set the fields on the new Node. Set data, next, and prev. 
Next points to current head. Prev points to null.
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List (doubly linked) - insertItem

ol.insertItem(10)

3. Set the original head's previous to the new Node.
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List (doubly linked) - insertItem

ol.insertItem(10)

4. Set the list start pointer (head) to the new Node.
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List (doubly linked) - insertItem

ol.insertItem(10)

4. Increment the length of the list.

© 2022 Arthur Hoskey. All 
rights reserved.

List (doubly linked)

length 5

20 30 40 50 10

temphead

prev

next

prev

next



List (doubly linked) - insertItem

ol.insertItem(10)

When the insertItem method ends the temp pointer will go 
out of scope and disappear.
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List (doubly linked) - insertItem

This picture is LOGICALLY EQUIVALENT to the previous 
slide!!!
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List (doubly linked) - insertItem

insertItem(int item)
Declare Node temp

Set temp to new Node instance

Set temp.data to item
Set temp.next to head
Set temp.prev to null

if (head not equal to null)
Set head.prev to temp

Set head to temp
Increment length
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If list was empty, then head will 
be null (only set prev if there is 

actually a node at the head)



List (doubly linked) - hasItem

 Start from beginning and visit each node.

hasItem(int target) returns boolean
Declare Node location
Set location to head
while (location not equal to null)

if (location.data equals target)
return true

Set location to location.next

return false
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Same as for 
singly-linked list



List (doubly linked) - deleteItem

Now we will move on to deleteItem…
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List (doubly linked) - deleteItem

deleteItem Pseudocode (Detailed)

1. Find the target item to delete. Can be one of 
two cases:

a) The start item is the target item.

b) The target is somewhere else in the list.

2. Update the pointers in the list so that the target 
item is removed.

3. Set the target to null so memory for that node 
can eventually be given back to the system.

4. Decrement the length.
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List (doubly linked) - deleteItem

We will now delete 10 from the list (10 is at the head)

ol.deleteItem(10)
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List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length
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List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length
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List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length
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List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length
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List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length
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List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length
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List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length
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List (doubly linked) - deleteItem

Now delete an item from the middle of the 
doubly-linked list…

© 2022 Arthur Hoskey. All 
rights reserved.



List (doubly linked) - deleteItem

We will now delete 30 from the list (30 is in middle of the 
list)

ol.deleteItem(30)
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List (doubly linked) - deleteItem

location = head
while ( (location != null) and (item != location.data)) 

location = location.next
endWhile
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List (doubly linked) - deleteItem

location = head
while ( (location != null) and (item != location.data)) 

location = location.next
endWhile
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List (doubly linked) - deleteItem

location = head
while ( (location != null) and (item != location.data))

location = location.next
endWhile
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List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length
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List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length
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List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length
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List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length
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List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length
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List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length
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Ordered List – makeEmpty

makeEmpty()
Set head to null
Set length to 0

void makeEmpty()
Declare Node temp
while  head not equal to null

Set temp to head
Set head to head.next
Set temp to null

end While

Set length to 0
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Same as for 
singly-linked list

Below is a slower version. It 
explicitly sets all nodes to 
null. This is unnecessary 

since the garbage collection 
will find those nodes for us.



Iterators

Now we will move on to iterators…
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IteratorForwardBackward
Interface

 We will use our own iterator interface.
 The iterator will be built into the class (OrderedList can 

implement this interface).

public interface IteratorForwardBackward {
int iterGetData();
void iterMoveNext();
void iterMoveStart();
void iterMovePrev();
void iterMoveEnd();
boolean iterIsValid();

}
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Iterator Methods for Traversing in 
Reverse

iterMovePrev()
if (iter not equal null)

Set iter to iter.prev

iterMoveEnd()
Set iter to head
while ((iter not equal to null) and (iter.next not equal to null)) 

Set iter to iter.next
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Iterator – Using the iterator in 
reverse

// Code to declare and populate list goes here…

ol.iterMoveEnd()
while (ol.iterIsValid() equals true)

Print ol.iterGetData()
ol.iterMovePrev()

Put the iterator at the 
end of the list

Keep going while 
iterator is valid

Print the data retreived 
using the iterator

Go to the 
previous node
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Big-O Comparison

Now we will finish with Big-O…
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Big-O Comparison

 It is important to know the approximate 
runtime cost operations when you create 
a data structure.

 What are the Big-O runtimes for the list 
implementations?
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Big-O Comparison – Ordered List 
(Doubly Linked-list)

Operation Cost

makeEmpty ???

isFull ???

getLength ???

hasItem ???

retrieveItem ???

insertItem ???

deleteItem ???
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Big-O Comparison – Ordered List 
(Doubly Linked-list)

Operation Cost

makeEmpty O(1)

isFull O(1)

getLength O(1)

hasItem O(n)

retrieveItem O(n)

insertItem O(1)

deleteItem O(n)
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End of Slides
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