
Data Structures
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Ordered Doubly-linked lists

© 2022 Arthur Hoskey. All
rights reserved.

Singly-Linked List

 A singly-linked list has links going in only
one direction.

 For example…

© 2022 Arthur Hoskey. All
rights reserved.

Singly-linked List

 Pointers only go forward.

© 2022 Arthur Hoskey. All
rights reserved.

List (singly linked)

length

50403020

head

4

Doubly-Linked List

 A doubly-linked list has links going in
BOTH directions.

 For example…

© 2022 Arthur Hoskey. All
rights reserved.

Doubly-linked List

 Pointers go in BOTH directions.
 Each node has a next and previous pointer.

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

4

20 30 40 50

List Interface

 Here is the List Interface we will be using (same
as for the singly-linked list):

public interface List {
public void insertItem(int item);
public void deleteItem(int item);
public boolean hasItem(int target);
public int retrieveItem(int target) throws Exception;
public void makeEmpty();
public boolean isFull();
public int getLength();

}

Note: Java has it own predefined List interface but it is more
complicated, so we are using our own version.

© 2022 Arthur Hoskey. All
rights reserved.

OrderedList Class (doubly linked)

 We will write an OrderedList class that
implements our List interface.

 This implementation will have both next and
previous links in each node.

public class OrderedList implements List
{

// Implementation code goes here
}

© 2022 Arthur Hoskey. All
rights reserved.

Node (doubly linked)

 The doubly-linked-list data structure requires that we keep TWO
links at each node.

 Each item in the list will be a "Node" (not just the data).
 A node stores data references to both the next node and the

previous node.
 Defined Node as an inner class within the ordered list class.

class Node {
Declare int data // Data item
Declare Node next // Points to NEXT node
Declare Node prev // Points to PREVIOUS node

}

© 2022 Arthur Hoskey. All
rights reserved.

data

next

prev

Node

List (doubly linked) Class Member
Variables

 Doubly-linked-based private members
(same as for singly-linked):

class OrderedList {
Declare Node head
Declare int length

// Public members go here…
}

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked) - Constructor

 What should the OrderedList
constructor do?

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked) - Constructor

 What should the OrderedList
constructor do?

OrderedList Constructor
Set length to 0 // Sets the # of elements to 0
Set head to null

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked) - Constructor

 Ordered list AFTER default constructor
runs.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

length

head

0

List (doubly linked) - isFull

isFull() returns boolean
Declare Node location
try

Set location to new Node instance
Set location to null
return false

catch OutOfMemoryError exception
return true

© 2022 Arthur Hoskey. All
rights reserved.

Check to see if
you can allocate

memory.

If you CAN, then
the list is NOT full

so return false.

If you CANNOT
allocate memory,

then the list is full.

List (doubly linked) - insertItem

How do you insert an item?

Where does it go in the list?

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked) - insertItem

 Where would a new item go? How is it inserted?
ol.insertItem(10)

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

4

20 30 40 50

prev

next

List (doubly linked) - insertItem

Since the list is ordered (and there are no other constraints)
we can put it anywhere in the list.

The easiest place to insert is at the beginning (same as for
singly linked).

insertItem Pseudocode
1. Create a new Node instance (dynamically allocate).
2. Set the fields on the new Node.

A. Set the data.
B. Set the next pointer to the current head.
C. Set the prev pointer to null.

3. Set the original head's previous to the new Node.
4. Set the head pointer to the new Node.
5. Increment the length of the list.

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked) - insertItem

ol.insertItem(10)

1. Create a new Node instance (dynamically allocate).

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

4

20 30 40 50

temp

prev

next

prev

next

List (doubly linked) - insertItem

ol.insertItem(10)

2. Set the fields on the new Node. Set data, next, and prev.
Next points to current head. Prev points to null.

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

4

20 30 40 50 10

temp

prev

next

prev

next

List (doubly linked) - insertItem

ol.insertItem(10)

3. Set the original head's previous to the new Node.

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

4

20 30 40 50 10

temp

prev

next

prev

next

List (doubly linked) - insertItem

ol.insertItem(10)

4. Set the list start pointer (head) to the new Node.

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length 4

20 30 40 50 10

temphead

prev

next

prev

next

List (doubly linked) - insertItem

ol.insertItem(10)

4. Increment the length of the list.

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length 5

20 30 40 50 10

temphead

prev

next

prev

next

List (doubly linked) - insertItem

ol.insertItem(10)

When the insertItem method ends the temp pointer will go
out of scope and disappear.

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

20 30 40 50 10

temphead

prev

next

prev

next

List (doubly linked) - insertItem

This picture is LOGICALLY EQUIVALENT to the previous
slide!!!

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

List (doubly linked) - insertItem

insertItem(int item)
Declare Node temp

Set temp to new Node instance

Set temp.data to item
Set temp.next to head
Set temp.prev to null

if (head not equal to null)
Set head.prev to temp

Set head to temp
Increment length

© 2022 Arthur Hoskey. All
rights reserved.

If list was empty, then head will
be null (only set prev if there is

actually a node at the head)

List (doubly linked) - hasItem

 Start from beginning and visit each node.

hasItem(int target) returns boolean
Declare Node location
Set location to head
while (location not equal to null)

if (location.data equals target)
return true

Set location to location.next

return false

© 2022 Arthur Hoskey. All
rights reserved.

Same as for
singly-linked list

List (doubly linked) - deleteItem

Now we will move on to deleteItem…

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked) - deleteItem

deleteItem Pseudocode (Detailed)

1. Find the target item to delete. Can be one of
two cases:

a) The start item is the target item.

b) The target is somewhere else in the list.

2. Update the pointers in the list so that the target
item is removed.

3. Set the target to null so memory for that node
can eventually be given back to the system.

4. Decrement the length.

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked) - deleteItem

We will now delete 10 from the list (10 is at the head)

ol.deleteItem(10)

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Target to
delete is 10
(head item)

Delete Code For
Head Node

List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Target to
delete is 10
(head item)

The if evaluates
to true

List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Target to
delete is 10
(head item)

Move head to
next node

List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Target to
delete is 10
(head item)

Set previous of
new head to null

List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Target to
delete is 10
(head item)

Makes the node a
candidate for

garbage collection

List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

4

10 20 30 40 50

location

Target to
delete is 10
(head item)

Decrement the
length

List (doubly linked) - deleteItem

Node location = head
if (item equals location.data)

head = head.next
head.prev = null
location = null
decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

4

20 30 40 50

Target to
delete is 10
(head item)

This is what list
looks like after the

deletion is complete

List (doubly linked) - deleteItem

Now delete an item from the middle of the
doubly-linked list…

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked) - deleteItem

We will now delete 30 from the list (30 is in middle of the
list)

ol.deleteItem(30)

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

List (doubly linked) - deleteItem

location = head
while ((location != null) and (item != location.data))

location = location.next
endWhile

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Set location to
head

Target is 30

List (doubly linked) - deleteItem

location = head
while ((location != null) and (item != location.data))

location = location.next
endWhile

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Keep moving
location to the

next node while
not at the target

Target is 30

List (doubly linked) - deleteItem

location = head
while ((location != null) and (item != location.data))

location = location.next
endWhile

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Keep moving
location to the

next node while
not at the target

Target is 30

List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

If location is null
then the target is

NOT in the list

Target is 30

List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Update next of
predecessor node
(location.prev is

predecessor node)

Target is 30

location.
prev.
next

Node with 20
is predecessor

node

location.
next

location.
prev

List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Update prev of
successor node
(location.next is
successor node)

Target is 30

location.
next.
prev.

Node with 40
is successor

node

location.
next

location.
prev

List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

5

10 20 30 40 50

location

Makes the node a
candidate for

garbage collection

Target is 30

List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

4

10 20 30 40 50

location

Decrement the
length

Target is 30

List (doubly linked) - deleteItem

if (location == null) then return
if (location.prev != null) then location.prev.next = location.next
if (location.next != null) then location.next.prev = location.prev
location = null
Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

List (doubly linked)

length

head

4

10 20 40 50

location

This is what list
looks like after the

deletion is complete

Target is 30

Ordered List – makeEmpty

makeEmpty()
Set head to null
Set length to 0

void makeEmpty()
Declare Node temp
while head not equal to null

Set temp to head
Set head to head.next
Set temp to null

end While

Set length to 0

© 2022 Arthur Hoskey. All
rights reserved.

Same as for
singly-linked list

Below is a slower version. It
explicitly sets all nodes to
null. This is unnecessary

since the garbage collection
will find those nodes for us.

Iterators

Now we will move on to iterators…

© 2022 Arthur Hoskey. All
rights reserved.

IteratorForwardBackward
Interface

 We will use our own iterator interface.
 The iterator will be built into the class (OrderedList can

implement this interface).

public interface IteratorForwardBackward {
int iterGetData();
void iterMoveNext();
void iterMoveStart();
void iterMovePrev();
void iterMoveEnd();
boolean iterIsValid();

}

© 2022 Arthur Hoskey. All
rights reserved.

Iterator Methods for Traversing in
Reverse

iterMovePrev()
if (iter not equal null)

Set iter to iter.prev

iterMoveEnd()
Set iter to head
while ((iter not equal to null) and (iter.next not equal to null))

Set iter to iter.next

© 2022 Arthur Hoskey. All
rights reserved.

Iterator – Using the iterator in
reverse

// Code to declare and populate list goes here…

ol.iterMoveEnd()
while (ol.iterIsValid() equals true)

Print ol.iterGetData()
ol.iterMovePrev()

Put the iterator at the
end of the list

Keep going while
iterator is valid

Print the data retreived
using the iterator

Go to the
previous node

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison

Now we will finish with Big-O…

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison

 It is important to know the approximate
runtime cost operations when you create
a data structure.

 What are the Big-O runtimes for the list
implementations?

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison – Ordered List
(Doubly Linked-list)

Operation Cost

makeEmpty ???

isFull ???

getLength ???

hasItem ???

retrieveItem ???

insertItem ???

deleteItem ???

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison – Ordered List
(Doubly Linked-list)

Operation Cost

makeEmpty O(1)

isFull O(1)

getLength O(1)

hasItem O(n)

retrieveItem O(n)

insertItem O(1)

deleteItem O(n)

© 2022 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2022 Arthur Hoskey. All
rights reserved.

